1. Exercises from 3.2

In this tutorial we'll study different ways of representing smooth curves. There are three principle ways to do this. For curves in \mathbb{R}^{2}, they are as follows:
(1) Explicitly, as the graph of a function $y=f(x)$
(2) Explicitly by a parameterization $t \mapsto\left(f_{1}(t), f_{2}(t)\right)$
(3) Implicitly, by the vanishing of a function $S=\left\{(x, y) \in \mathbb{R}^{2} \mid F(x, y)=0\right\}$

The implicit function theorem implies the local equivalence of these statements.
We say that a curve is smooth if every point has a neighbourhood on which the curve is the graph of a differentiable function. There are two obvious ways a curve can fail to be smooth: (1) It can intersect itself, or (2) it can have a cusp.

Example of a smooth curve: Let $S=\left\{(x, y) \mid F(x, y)=y-x^{2}=0\right\}$. We can also think of S as the graph of the map $f: x \mapsto x^{2}$, or alternatively, as the image of the curve $\gamma(t):(-\infty, \infty) \rightarrow \mathbb{R}^{2}$, $\gamma(t)=\left(t, t^{2}\right)$. This curve is smooth almost by definition, since it is the map of $y=f(x)=x^{2}$, a differentiable map.

Example of a non-smooth curve: Let $S=\left\{(x, y) \mid x^{3}-y^{2}=0\right\}$, then we can define S piecewise as a curve by:

$$
\gamma(t)=\left(t^{2}, t^{3}\right) t \in(-\infty, \infty)
$$

Alternatively, we can think of S as the graph of the function $f(y)=y^{2 / 3}$. Notice though that this is not differentiable at the origin, since $f^{\prime}(y)=(2 / 3) y^{-2 / 3}$ is not defined at $y=0$. This shows that S is not a smooth curve.

Problem 1. Let $F(x, y)=x y(x+y-1)$, and set $S=\{(x, y) \mid F(x, y)=0\}$. Sketch S. Is S smooth? Near which points is S the graph of a function $y=f(x)$, or $x=f(y)$?

- $F(x, y)=0$ if and only if $x=0$, or $y=0$, or $y=1-x$.
- (Draw S).
- Thm. 3.11 says that if $a \in S$ and $\nabla F(a) \neq 0$, then S is the graph of a C^{1} function in a neighbourhood of a. Taking the contrapositive, if we want to find possible points where the curve S is not smooth, then we should look for points in S such that $\nabla F(a)=0$.

$$
\nabla F=\binom{y(2 x+y-1+x y)}{x(2 y+x-1+x y)}
$$

- Case 1: $x=0$ and $y=0$.
- Case 2: $y=0$ and $x \neq 0$, then $2 y+x-1+x y=x-1=0$ implies $x=1$.
- Case 3: $x=0$ and $y \neq 0$, then $2 x+y-1+x y=y-1=0$ implies $y=1$.
- Case 4: $x \neq 0$ and $y \neq 0$, then $2 y+x-1+x y=0$ and $2 x+y-1+x y=0$. Subtracting the second from the first gives $y=x$. Now we need $x^{2}+3 x-1=0$, which can be solved to give $y_{0}=x_{0}=(-3 \pm \sqrt{13}) / 2$. However, $F\left(x_{0}, y_{0}\right) \neq 0$ so this point is not in S.
- Near each of the points where $\nabla F=0, S$ is a union of two lines; therefore S could not be the graph of a single-valued function near any of these points.
- We have found the points of S such that $\nabla F=0$, so by thm. 3.11 we know that S can be represented by the graph of a function near every point except $(0,0),(0,1)$, and $(1,0)$.

Problem 2. Let $\gamma(t)=\left(t^{3}-1, t^{3}+1\right)$. Is $\gamma(t)$ a smooth curve? Sketch the curve. Examine S near any points where $\gamma^{\prime}(t)=0$.

- If we take $x=\gamma_{1}(t), y=\gamma_{2}(t)$, then $x-y+2=0$.
- Define $F(x, y)=x-y+2$, then $\nabla F(x, y)=(1,-1) \neq 0$ so the curve $\gamma(t)$ must be smooth
- (Sketch the plane)
- Notice that $\gamma^{\prime}(t)=\left(3 t^{2}, 3 t^{2}\right)$ which has a zero at $t=0$, however, the curve is still smooth at the point $(-1,1)$.

